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Abstract

Through the development of three generations of
code-division multiple-access (CDMA) IC families, we
adopted hardware/software co-verification as part of
our design process.  Our initial goal was to provide the
software team earlier access to an executable
specification of the hardware for early low-level driver
debugging.  After using co-verification through the first
generation of our chips we realized its benefits in the
hardware design process as well. Another interesting
side effect of using co-verification was the
collaboration of the hardware and software teams at an
earlier phase of the design cycle.

In this paper we will describe our experiences with
hardware/software co-verification as we applied them
to our design process.  We will also detail what we
believe to be important criteria when selecting and
implementing a co-verification strategy, as well as the
limitations of this technology and our view of needed
future enhancements.

CDMA Handset ASIC

Hardware/software co-verification was used in the
development of several generations of our CDMA
handset ASICs, known as Mobile Station Modem
(MSM).  The MSM is a complete, single  chip solution
for CDMA and FM digital base-band processing for
dual-mode (CDMA/FM) cellular telephones. The MSM
incorporates the functionality previously provided by
several individual ICs.  The MSM interfaces directly
with the Analog Base-band Processor (BBA) to provide
the core functionality of an IS-95 subscriber unit.

The MSM3100 is a 6th-generation single-chip base-
band processor with higher data rates and advanced
power control. The high data rates are supported by IS-
95B compliant infrastructure.  This supports Internet
applications with fast packet-switched access to
databases, e-mail  and web browsing.  Target
applications for the MSM3100 include subscriber units
for multi-mode cellular and PCS handsets, and data

communications devices. The MSM3100 includes
proprietary CDMA building blocks, the ARM7TDMI
processor core and several DSP cores integrated onto a
single chip.

Hardware/Software Co-verification

Hardware/Software co-verification tools permit
software to be executed on a hardware design, while the
hardware design is being simulated in a HDL simulator.
These tools are available from the major EDA vendors.
On the hardware side, the HDL simulator is used to run,
control, and debug the hardware design; on the software
side an embedded debugger is used to display, and
control the execution of the software.  Using a co-
verification tool also requires a model of the processor
in the simulated design.  These processor models are
generally available from the EDA vendor, but in several
cases are now available from the silicon vendors.

All co-verification tools achieve reasonable levels of
performance, with respect to the software, by hiding
bus transactions from the logic simulator.  Bus cycles
modeled in the logic simulator run at logic simulation
speeds, about 10 cycles per second.  While hidden
cycles can be processed at around 100,000 cycles per
second.  The “hidden” bus cycles are generally
uninteresting activity that does not impact the operation
of the hardware, such as instruction fetches and
software data space references. [1][2]

When we began to look into co-verification tools,
they were not yet a proven technology.  EDA vendors
were making bold claims about the capabilities of their
tools.  We were skeptical about the performance of
these tools and very concerned about the side effects of
removing the “hidden” bus cycles from the logic
simulation.  During simulation of our CDMA design
the timing of the presentation of events from the
processor is critical to proper operation.

The Drive for Co-verification

During the development of the MSM2x series of
products, the level of complexity in both the hardware
and software design was increasing significantly.  At



this time, the hardware and software designs were
developed and verified independently. The processor in
the MSM2x was an Intel 80186. Beginning with the
MSM3000 series, we switched to the ARM7TDMI
core, and started to integrate more functionality into a
single chip. In earlier projects, the software team could
run at least some of their software on a prior design,
since the processor and much of the hardware were
similar. They could get some software debug activities
completed in this manner.  The final software debug
phase would have had to wait for the chips to be taped
out and a prototype design built.

Changing the processor meant that all of the
software would be changing.  Even high-level
application code written in C would be compiled
through a new compiler tool chain.  Low-level drivers
would need to be mostly re-written. With all of these
changes to the software, we wanted to give the software
team as much of a head start on debugging as possible.
Co-verification was chosen as a method of allowing the
software team access to a functioning and usable
hardware design before prototypes ever could have
been available.

Evaluating Co-verification Tools

When considering a co-verification tool, our biggest
concern was the ability of the tool to handle real world
designs as complex as we were building.  EDA vendors
would demo their products on very simple circuits and
software.  We were also concerned about proper
operation with “hidden” bus cycles.  Without being able
to take advantage of this cycle “hiding” the
performance of the simulations would be too slow to be
useful.  Even with cycle “hiding” performance was a
big concern.

To address our concerns about the viability of co-
verification we decided to have the EDA vendors “test
drive” their tools on our design.  Although this meant
setting up and learning to use several co-verification
tools, a very time and labor consuming process, it was
well worth the effort.

The co-verification tools from the various vendors
appear, at first glance, to be quite comparable.
However, running the tools on our design gave us an
appreciation of the subtle differences between the tools.
As previously mentioned, co-verification tools gain
performance by “hiding” bus transactions from the
logic simulator.  These hidden transactions are
processed against a memory array that is not contained
in memory instances the logic simulator.  Both V-CPU
from Summit and Eagle-I from Synopsys approach this
problem by partitioning the memory space of the
system into software and hardware regions.  Accesses
into the “software” memory regions are “hidden” and
accesses into the hardware regions are run in the logic

simulator. Seamless-CVE from Mentor has a similar
concept of hardware and software memory, but stores
the data in what they call a “memory image server” for
both hardware and software regions.

The obvious benefit of Mentor’s approach is that the
hardware and software partition can be changed while
the simulation is running.  There are a couple of not so
obvious benefits that result from this difference as well.
The main benefit is debug visibility.  With V-CPU and
Eagle-I the memory partitioning limits debug visibility.
The hardware simulator can only see, and therefore can
only debug, the hardware partition of the memory.
Likewise, the software debugger only has access to the
software partition.  With Seamless CVE, both the logic
simulator and software debugger have visibility into the
entire memory space of the system being simulated.

The other benefit Mentor has is the ability to turn
off the cycle “hiding.”  The architecture of the  memory
image server allows the partitioning of memory regions
between hardware and software to be changed.  In fact,
it can be changed during a simulation run.  By changing
this partition so that all memory is defined as hardware
memory, you can turn off the cycle hiding aspect of the
simulation.  This means that all bus cycles will be
driven through the logic simulator.  Effectively, the co-
verification processor model is turned into a full
functional processor model for a portion of the
simulation.  This is critical during hardware operations
where the presentation of events from the processor is
sensitive to timing.

Mentor’s approach has its share of drawbacks.
Seamless CVE is a bit more complex to setup, when
compared with its competitors. This extra setup is
required by the memory image server. Another
annoying limitation of Seamless CVE is its inability to
run across the network; that is run the software
debugger on a PC while the logic simulation runs on a
workstation, with communication across a network.
Most of our software development is done on PCs, and
our hardware design is done on workstations.  So this
would be a far more natural, and desirable,
configuration.  We concluded that the benefits of
Mentor’s approach outweighed the limitations.

MSM3000

 Once we had selected a co-verification tool, we set
about applying co-verification to our design process.
At the time, co-verification tools were very new
technology.  Our test drives of these tools showed us
that these products were immature.  We were concerned
about having our design process rely on tools that
weren’t quite ready.  We chose to apply co-verification
first to a hardware design that was already known to be
good.  Using this stable platform, we could explore the
capabilities of the tool, without worrying about



impacting the project.  This also gave us confidence
that when a problem was encountered that it would not
be the hardware design that was generating the
problem.

With a known good hardware design, we modified
the design to work with the co-verification tool.  This
involved three steps; first replacing the processor
model, replacing the memory models, and creating a
memory map.  To replace the processor model, we
simply created a new architecture for the ARM7TDMI
entity.  Since our full functional model of the ARM
processor and the co-verification model were both
created by ARM, the pin names on the existing entity
and the new architecture matched, making the job
straightforward. The same approach was used to replace
the memory models.  Creation of the memory map was
a simple process using the co-verification tool'’ GUI.

Co-simulation

With the design properly configured for co-
verification, we were ready to begin co-simulation.  On
the MSM3000, our goal was to see what was really
possible to accomplish with co-verification on designs
as complex as we were building.  We started with small
snippets of code, focusing on low level driver code that
has a high degree of interaction with the hardware.

With no hidden cycles the performance was similar
to logic simulation. Which we found generally not
useful for the execution of software.  With hidden
cycles we were achieving execution rates of
approximately 1 microsecond of simulated time per
second. This was measured using ModelSim as the
logic simulator.  Using the IKOS accelerator, we
measured performance between 10 and 20
microseconds of simulated time/second.  While the
performance is excellent when compared with logic
simulation speeds, it is quite slow when compared with
the execution rates that our software team is used to
running.

The performance of co-verification was not an issue
when applied to low level driver code.  These were
generally small, short tests that exercised a small subset
of the system.  As we included more code into the tests,
performance became more of an issue.  While it would
be nice to run application code in a co-verification
environment, at this time it is not practical.  Some
people may also argue that that would be an improper
use of co-verification. The performance of the system
in the co-verification environment is just not sufficient
to load an application and run.  However, we found that
through a couple of techniques, we were able to test
limited higher-level functionality using co-verification.

 First, the overall performance of the system running
in co-verification is highly dependent upon the ratio of
“hidden” bus cycles to bus cycles run in the logic

simulator [3].  By constructing tests that maximize the
number of hidden cycles, performance can be enhanced
significantly.  We found that a number of hardware
operations that we were running, due to the complexity
of our CDMA design, would not function properly with
hidden bus cycles.  Because of this, we needed to
change the partition between hardware and software
memory during the simulations to get maximum
performance and correct operation.  Using breakpoints
and automated scripts in the logic simulator, we were
able to automate the repartitioning of the memory.

Another technique that allowed us to start looking at
higher-level functionality was some simple pruning of
the higher-level code.  For example, let us consider the
case where the actual product will power up and run a
ROM based bootstrap loader that copies the application
from ROM to RAM and then launches the application.
By simply loading the application into RAM directly at
time 0, we skipped this time consuming step in the
simulation. Further examples would delve into
proprietary information, but the concept should be
clear.  Simple changes to the software can result in
significant performance gains without impacting your
verification.

Pilot Acquisition Achieved

On the MSM3000 we were able to run a significant
amount of application level functionality.  We are
unable to provide specific details due to the proprietary
nature of this data, but we were able to simulate the
cellular phone, with the MSM3000, powering up and
"acquiring" a pilot. Initially, we ran a "cheated"
acquisition, where the digital base station model
emanates data at the optimum time when the simulated
phone can acquire them.  Ultimately, we were able to
run a full blind search and acquisition in less than 8
hours of simulation. This was far more functionality
than we ever anticipated being able to simulate.

MSM3100

Our work on the MSM3000 chip showed us that co-
verification was a viable technology for use on designs
as complex as our CDMA chips.  In fact, we realized
our goal of getting the software team earlier access to
the design.  In our second generation of this family, we
used co-verification while the hardware was being
designed.  The hardware team would get to a point on
the design where it was functional.  A “snapshot” of the
design would be taken and given to the software team.
The software team would run their code against the
hardware design.  This would allow them to begin the
debug process on the software and to report problems
found in the hardware to the hardware team.  As



hardware problems were uncovered, the hardware team
would fix the problems and “snapshot” a new version
of the hardware.  The process of incremental hardware
releases kept the hardware and software teams
progressing in parallel.

Hardware Problems Found

The software team did uncover problems in the
hardware design, and the hardware and software teams
began to work in a more collaborative manner.  One of
the hardware problems found by the software team was
in the CDMA demodulator block.  The CDMA
demodulator block is a part of the hardware design that
can be run in a variety of the modes.  The hardware
team would have eventually tested all combinations of
operating modes, but the software team, while running
their software uncovered a combination of modes that
was not working.

Another problem uncovered by executing software
in the co-verification tool was a problem in a clock
divider.  The MSM3100 implemented a new clock
generation and division circuitry that was more efficient
than the MSM3000. The clock divider, due to a logic
error was dividing down a clock to an incorrect
frequency.  While the problem could be seen in the
logic simulator, the software execution made the
problem obvious.  The hardware was just not
responding to software at appropriate times.  These are
just a couple of examples of the types of problems that
we discovered by running co-verification

These problems, and others like them, were fixed by
the hardware team and delivered to the software team in
incremental hardware “builds.”  In our experience, one
of the most powerful results of using co-verification is
that it makes early collaboration of the hardware and
software teams possible. In traditional development
cycles, the hardware and software teams get together
only after the hardware is in the lab, i.e., after a
prototype is built.  Once the prototype is done, making
any changes to the hardware is expensive and time
consuming.  As a result, in many companies, the team
members sometimes end up taking on an adversarial
role.  With co-verification, the teams can work together
when a problem is found, and engineer a solution –
which is what they are good at – instead of avoiding
blame.  By creating the hardware and software in
parallel, the hardware team got feedback from the
software team.  And the software team was able to
evaluate the hardware when there was still a possibility
of changing the hardware to accommodate any required
changes.  With co-verification, the hardware can go
through many more design iterations than would have
been possible with a physical prototype methodology.
It is easy to envision a time when these iterations will

be used by the design team to explore the design space
to engineer the optimal solution.

Future Co-verification

Through our use of co-verification over the past few
generations of the MSM3x family we have realized
significant benefits.  Its stability, maturity, and
functionality have improved noticeably since its
introduction.  However, we still see room for
improvement.  The performance of co-verification is
not sufficient to simply load and run large applications,
or even meaningful regression tests on low-level
drivers.  However, since higher-level code is largely
isolated from the hardware, this is not a glaring
limitation.  We were able to test certain limited higher-
level functionality.  The next level of performance
improvement should result in the ability to comfortably
run meaningful regression tests as well as large
applications.

The impracticality of regression tests showed up in
our inability to exercise our Viterbi decoder in co-
verification. A Viterbi decoder is an algorithm for
eliminating background noise from signals.  It is used to
improve the quality of the received signal.  It processes
data on a packet basis. Processing one packet takes 20
milliseconds of real time.  Even with the co-verification
optimizations we were able to run 1 packet in about 6
hours.  To fully test all combinations and corner cases,
we need to run the algorithm on about 1000 packets,
which is impractical on today’s co-verification tools.

Conclusions

Our initial investigations of co-verification on the
MSM3000 proved that it is viable technology for low-
level device driver interfaces.  We then decided to use
co-verification on the development of the MSM3100.
As a result, we estimate that we were able to save about
a month on our handset software delivery schedule.
Initially, we realized the benefit of giving the software
team earlier access to the hardware design.  On our
second design, we uncovered hardware design errors as
well as accelerated our software debug process.  Also of
significant value to the design process is the
collaboration of the hardware and software design
teams, as they work together for the first time
engineering real solutions to hardware/software
integration problems.  In past projects we would have
patched or worked around these issues in a reactive
manner.

Co-verification tools are costly, but their price needs
to be considered in the context of the benefits that they



deliver.  For projects as complex as ours and with
significant time to market pressures, the price is worth
it. If co-verification enjoyed further speed
improvement, it will certainly become more attractive
to a wider range of verification interests.

Looking forward to new projects, we will continue
to use co-verification.  We are also developing other
verification methods to address verification tasks where
higher levels of performance are required.  But we
believe that the verification of our low-level timing-
critical driver code and its interaction with hardware
requires the debug visibility and accuracy that are
afforded by co-verification.

References

[1] R. Klein, “Miami, a Hardware/Software Co-verification
System,” in Proc 7th  IEEE Rapid Systems Prototyping
Workshop, 1996, p. 173-177

[2] J. Wilson, “Hardware/Software Selected Cycles
Solution,” in Proceedings of the  3rd  International
Workshop on Hardware/ Software Codesign  1995,
p.190-194

[3] M. Stanbro, “Getting to the Bottom of HW/SW Co-
verification Performance Claims,” Computer Design,
Vol 37 No 12, December 1998, p65-67

"Reproduction by permission of the International HDL
Conference"


